ERC2771 Multicall任意地址欺骗攻击分析复现

距离这一事件发生不到一天,进行一下漏洞分析和复现。(真是一场大汗淋漓的复现,边复现边发现有新的合约被攻击,有新的黑客和攻击合约出现…..)

消息来源:

X 上的 Scam Sniffer | Web3 Anti-Scam:“After more investigation, there are 515 Thirdweb deployed tokens on the Mainnet affected by the Multicall and ERC-2771 vulnerabilities, 25 of which have been exploited. Both HXA and WFCA are listed on exchanges and the prices have dropped a lot. https://t.co/3VnSWtNtio” / X (twitter.com)

X 上的 Phalcon:“Since OZ has publicly disclosed the details of the problematic integration between two specific standards – ERC-2771 and Multicall – we now re-share our analysis of the related exploit. The interesting aspect of this exploit stems from the way the public burn issue was taken… https://t.co/GMHjnn11n9” / X (twitter.com)

攻击者地址分析:

只举例最先发生攻击的地址,这一攻击行为后来被其他haker地址争先模仿,涉及到多个链:比如BSC Polyon….

ETH链:

https://etherscan.io/tx/0xecdd111a60debfadc6533de30fb7f55dc5ceed01dfadd30e4a7ebdb416d2f6b6

hacker: https://etherscan.io/address/0xfde0d1575ed8e06fbf36256bcdfa1f359281455a

hacker利用的攻击合约: https://etherscan.io/address/0x6980a47bee930a4584b09ee79ebe46484fbdbdd0

对攻击合约进行反编译

https://library.dedaub.com/decompile?md5=b01e758fad75dad198dfbcc4f2e52e35

Polygon链:

https://polygonscan.com/tx/0x1b0e27f10542996ab2046bc5fb47297bcb1915df5ca79d7f81ccacc83e5fe5e4

hacker:https://polygonscan.com/address/0x0a4311b6a2e6dbc5b6a1a0c2bd77b3d83f220a1c

hacker利用的攻击合约:https://polygonscan.com/address/0x1a8c8706f51dc21f455ff1b44f5678ede8faabb7

对攻击合约进行反编译

https://library.dedaub.com/decompile?md5=a572dd9666a813f2d1e82c4e3932af30

漏洞产生的平台:

ERC-2771: Secure Protocol for Native Meta Transactions (ethereum.org)

Utilities - OpenZeppelin Docs

受到影响的代币:

影响代币很多,比如:

ETH主网:HXA WFCA TIME(https://etherscan.io/tx/0xecdd111a60debfadc6533de30fb7f55dc5ceed01dfadd30e4a7ebdb416d2f6b6) NAME(https://etherscan.io/tx/0x4ed1ec3d33c297560ed8f5a782b54d2c52adb20155c543fb64ba9065e45c046c) 等

polygon:Swop(https://polygonscan.com/tx/0x1b0e27f10542996ab2046bc5fb47297bcb1915df5ca79d7f81ccacc83e5fe5e4) (hack:https://polygonscan.com/address/0x0a4311b6a2e6dbc5b6a1a0c2bd77b3d83f220a1c) 攻击合约:(https://polygonscan.com/address/0x1a8c8706f51dc21f455ff1b44f5678ede8faabb7)

https://polygonscan.com/txs?a=0x5dbc7b840baa9dabcbe9d2492e45d7244b54a2a0

漏洞分析:

链上分析

这里以TIME举例

受攻击合约地址 Time (TIME) Token Tracker | Etherscan

hacker: ERC2771 Exploiter 2 | Address 0xfde0d1575ed8e06fbf36256bcdfa1f359281455a | Etherscan

hacker利用的攻击合约: MEV Bot: 0x698…DD0 | Address 0x6980a47bee930a4584b09ee79ebe46484fbdbdd0 | Etherscan

Phalcon可视分析:

https://explorer.phalcon.xyz/tx/eth/0x4ed1ec3d33c297560ed8f5a782b54d2c52adb20155c543fb64ba9065e45c046c

0xecdd111a60debfadc6533de30fb7f55dc5ceed01dfadd30e4a7ebdb416d2f6b6

更加详细:https://www.metasleuth.io/result/eth/0xecdd111a60debfadc6533de30fb7f55dc5ceed01dfadd30e4a7ebdb416d2f6b6

黑客的动作可以分为以下:

一:0xfde0d1575ed8e06fbf36256bcdfa1f359281455a 花费了55Wei部署了MEVbot(攻击合约),然后攻击合约用5个ETH兑换出来了5个WETH

二:用这5个WETH通过Uniswap兑换出来345,539,9346个Time币,

三:然后调用execute 函数,构造恶意的 data 去调用代币合约的 multicall 函数

image-20231210004334973

代币合约会根据攻击者传入的恶意 data 去 delegateCall 执行代币合约的 burn 函数,燃烧掉池子地址中的 62,227,259,510 个 Time 币(就是所谓的将代币打入0x00中)

四:然后导致代币价格瞬间上涨,随后黑客通过uniswap卖出3,455,399,346个Time币,获得大约94个WETH,然后兑换为大约94个ETH。(Mevbot这一操作过程给Flashbots大约5个Eth,使其保证交易快速稳定)。

漏洞代码原理分析

Forward.sol:

1
2
3
4
5
6
7
8
9
10
11
12
function execute(ForwardRequest calldata req, bytes calldata signature)
public
payable
returns (bool, bytes memory)
{
require(verify(req, signature), "MinimalForwarder: signature does not match request");
_nonces[req.from] = req.nonce + 1;

// solhint-disable-next-line avoid-low-level-calls
(bool success, bytes memory result) = req.to.call{ gas: req.gas, value: req.value }(
abi.encodePacked(req.data, req.from)
);

execute 函数中,验证 req.from 的签名过后会用 call 交互 req.to(代币地址)。其中攻击者传入的 req.data 为

image-20231210011000963 0xac9650d8000000000000000000000000000000000000000000000000000000000000002000000000000000000000000000000000000000000000000000000000000000010000000000000000000000000000000000000000000000000000000000000020000000000000000000000000000000000000000000000000000000000000003842966c680000000000000000000000000000000000000000c9112ec16d958e8da8180000760dc1e043d99394a10605b2fa08f123d60faf840000000000000000

因为 0xac9650d8 为 multicall 函数的函数签名,故会调用代币合约的 multicall 函数,并且multicall 函数传入的 data 值为:

image-202312100114416740x42966c680000000000000000000000000000000000000000c9112ec16d958e8da8180000760dc1e043d99394a10605b2fa08f123d60faf84

所以传入的data就是

1
2
3
4
5
6
0xac9650d8
0000000000000000000000000000000000000000000000000000000000000020
0000000000000000000000000000000000000000000000000000000000000001
0000000000000000000000000000000000000000000000000000000000000020
0000000000000000000000000000000000000000000000000000000000000038
0x42966c680000000000000000000000000000000000000000c9112ec16d958e8da8180000760dc1e043d99394a10605b2fa08f123d60faf84

为什么传入 multicall 函数的 data 值中没有 req.from 呢?攻击者传入 calldata 中设置了一个偏移量为38,长度为1字节的数据。这是由于EVM在处理call调用时,会根据传入的偏移量截断实际需要的值。所以在这里,攻击者设置偏移量为38,意味着截断掉前38个字节,只取第39个字节。而第39个字节是一个非零值,被解释为true,数值长度为 1,所以刚好截取出来的 data 值是

42966c680000000000000000000000000000000000000000c9112ec16d958e8da8180000760dc1e043d99394a10605b2fa08f123d60faf84 具体可以参考 (evm.codes)

因为0x42966c68为 burn 函数的函数签名,所以会根据攻击者构造的 data 值去 delegatecall 调用代币合约的 burn 函数。

MulticallUpgradeable.sol

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
    function multicall(bytes[] calldata data) external virtual returns (bytes[] memory results) {
results = new bytes[](data.length);
for (uint256 i = 0; i < data.length; i++) {
results[i] = _functionDelegateCall(address(this), data[i]);
}
return results;
}
------------------------------------------------------------------------------------------------------
function _functionDelegateCall(address target, bytes memory data) private returns (bytes memory) {
require(AddressUpgradeable.isContract(target), "Address: delegate call to non-contract");

// solhint-disable-next-line avoid-low-level-calls
(bool success, bytes memory returndata) = target.delegatecall(data);
return AddressUpgradeable.verifyCallResult(success, returndata, "Address: low-level delegate call failed");
}
image-20231210012455791

其中 _msgSender() 函数被 ERC-2771 库重写。(因为目前代码已经修改了,所以去调用NAME的来看)

我们来看下ERC-2771: Secure Protocol for Native Meta Transactions (ethereum.org)

可以找到

1
2
3
4
5
6
7
function _msgSender() internal view returns (address payable signer) {
signer = msg.sender;
if (msg.data.length>=20 && isTrustedForwarder(signer)) {
assembly {
signer := shr(96,calldataload(sub(calldatasize(),20)))
}
}

所以最终_msgSender() 返回的值为传入的 calldata 的最后 20 个字节“0x760dc1e043d99394a10605b2fa08f123d60faf84”

0x760dc1e043d99394a10605b2fa08f123d60faf84Uniswap V2: TIME 40 | Address 0x760dc1e043d99394a10605b2fa08f123d60faf84 | Etherscan为池子地址。

Exp分析

漏洞复现

本人已经在ETH和polygon复现了,可以利用黑客攻击合约自己部署在测试网进行测试,或者直接fork主网进行复现。

由于目前这一漏洞还有很多代币影响,就先不写exp分析和复现过程了。

挖个坑,等结束补上

参考:

ERC-2771: Secure Protocol for Native Meta Transactions (ethereum.org)

Security Vulnerability Incident Report 12/8 — 安全漏洞事件报告 12/8 (thirdweb.com)

Smart contract security vulnerability 12/4 (thirdweb.com)

Arbitrary Address Spoofing Attack: ERC2771Context Multicall Public Disclosure — 任意地址欺骗攻击:ERC2771Context Multicall 公开披露 (openzeppelin.com)